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Two-dimensional vortex shedding behind an inclined flat plate in uniform shear flow 
is numerically investigated by means of an inviscid discrete-vortex approximation. 
The points of appearance of the vortices are fixed in the plane of the plate a t  a short 
distance downstream of the edges of the plate. The strengths of the vortices are 
determined from the Kutta condition. On the assumption that the steadily periodic 
flow patterns are independent of initial conditions, the numerical calculations are 
performed for an inclined flat plate immersed in an incompressible fluid which is set in 
motion impulsively from rest with the velocity profile of uniform shear flow. The 
results of analysis show that the Strouhal number of vortex shedding and the time- 
averaged values of other hydrodynamic characteristics of the flow such as the outer- 
edge velocity of the separated shear layers, the convective velocity of the shear layers 
and the drag force exerted on the plate vary closely linearly with the shear parameter 
of the approaching shear flow. A linear relation between the Strouhal number and the 
shear parameter is confirmed by an air-tunnel experiment. The effects of the shear 
parameter on the calculated vortex patterns in the wake are also presented. 

1. Introduction 
The vortex shedding from two-dimensional bluff bodies placed in a uniform stream is 

of great practical importance and has been extensively studied for many years. 
Excellent reviews of the subject were published by Morkovin (1964) and Berger & 
Wille (1972), among others. There are, however, a number of practical cases in which 
the flow approaching the body is not uniform but is sheared, a typical example being 
a structure in the turbulent planetary boundary layer on the earth. Since structural 
oscillations can be caused by the vortex shedding from such a body, it is important to 
know whether the presence of shear in the approaching stream can have much effect 
on the mechanism by which the vortices are shed. 

Very little work has been reported on the effect of shear on the vortex shedding. 
Furthermore, as far as the authors are aware, most of the previous investigators 
were concerned with a free-stream velocity varying in the axial direction of a cylindrical 
body. The flow over the body in this situation is pseudo-two-dimensional or weakly 
three-dimensional. A good list of papers in this category can be found in Maul1 & Young 
(1973). The main results of these investigations may be summarized as follows: the 
Strouhal number defined in terms of the vortex-shedding frequency, a representative 
length of the body and the local velocity in the free stream corresponding to the point 
of measurement is constant along the axis of the body within an error of a few per cent 
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(Chen & Mangione 1969; Maull & Young 1973); the vortex shedding from a bluff body 
in a shear flow can occur in spanwise cells, the frequency of vortex shedding being 
constant in each cell (Maull & Young 1973; Stansby 1976). 

In addition to axial non-uniformity in the free stream, there exists another typical 
two-dimensional case: that in which the free-stream velocity is uniform in the axial 
direction of the body but varies in the direction normal to it. The planetary boundary- 
layer flow over long structures such as overhead railways or bridges which are parallel 
to the ground or water surface will be the most familiar examples. In  some of these 
applications, the neighbouring boundary may exert a considerable influence on the 
kinematic and dynamic properties of the flow over the body, including the vortex- 
shedding characteristics. However, in order to understand the effect of the free-stream 
non-uniformity on the characteristics of the flow, it is reasonable to neglect that of the 
neighbouring boundary in the interests of simplicity for the time being. Apart from 
the practical applications, this problem deserves attention in its own right as one of the 
fundamental problems in fluid mechanics. It is rather surprising that, within the 
authors’ knowledge, almost nothing is known about the vortex-shedding and related 
hydrodynamic characteristics of a two-dimensional body placed in such a shear flow. 

From this point of view, the present paper describes a theoretical investigation of the 
vortex-shedding and related properties of an inclined flat plate placed in a uniform 
shear flow which has a linearly varying velocity profile. A uniform shear flow has 
been employed here in order to make the problem theoretically tractable. The choice 
of an inclined flat plate will be justified in what follows in conjunction with the 
theoretical model. The relation between the vortex-shedding frequency and the free- 
stream non-uniformity obtained theoretically will be compared with the result of an 
air-tunnel experiment. 

2. Method of analysis 
At present one of the most powerful theoretical tools which permit calculation of 

unsteady separated flow over two-dimensional bluff bodies at sufficiently large 
Reynolds number is the inviscid discrete-vortex model. In this model, the shear layers 
emanating from the separation points are approximated by an array of discrete 
vortices introduced into the wake at appropriate time intervals at  some points in the 
vicinity of the separation points. The motion of the shear layers is then represented 
by the evolution of the arrays of vortices. An extensive review of the investigations 
based on the inviscid discrete-vortex model was written by Clements & Maull (1975), 
and demonstrated the limitations and usefulness of the model. 

The determination of the positions of appearance and strengths of the vortices is 
one of the crucial points in a calculation based on this model. Kuwahara (1973), in his 
calculation of the vortex shedding behind an inclined flat plate, determined the 
strengths of the nascent vortices from the Kutta condition. The nascent vortices were 
introduced a t  two fixed points near the edges of the plate. Further examination of 
Kuwahara’s method was undertaken by Kiya & Arie (1977, hereafter referred to as 
K & A), who calculated in detail the kinematic and dynamic properties of flow over 
an inclined flat plate by systematically changing the distance between the points of 
appearance of the nascent vortices and the edges of the plate. Clements & Maull (1975) 
used the same method in some of their calculations of the vortex shedding behind 
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a square-based body. Sarpkaya (1975) was also concerned with the inclined flat plate 
but used the Kutta condition in a different way. He determined the positions of the 
nascent vortices from the Kutta condition after computing their strengths in terms 
of the average of the transport velocities of four vortices in each shear layer. The 
number of disposable parameters is reduced to a minimum in Sarpkaya’s method and 
in this sense it may be better than Kuwahara’s method. Sarpkaya argues that oscilla- 
tion of the positions of the nascent vortices is essential to the continuation of oscillations 
in the drag force exerted on the plate and is coupled with the manner in which the 
vortex sheets roll up. However, as was shown in K & A, oscillation of the position 
of the nascent vortices is not essential to the continuation of the drag-force oscillation. 
Although it is true that Sarpkaya’s method predicts values of the Strouhalnumber and 
the time-averaged drag force in better agreement with experiments than does 
Kuwahara’s method, the latter is far easier to apply and less time consuming in 
view of the programming procedure and computer run time. Since an established 
computer program based on the method of Kuwahara is available to the authors, it  
will be used in the present investigation with a few modifications required to incor- 
porate the effect of the free-stream shear. 

The Strouhal number which is calculated by Kuwahara’s method for a plate at an 
incidence of 60” placed in a uniform free stream is 22-36 yo smaller than that observed 
experimentally, when the distance a, between the locations of the nascent vortices and 
the edges of the plate is taken as aJ(2a) = 0*0125,2a being the half-height of the plate. 
The time-averaged drag force exerted on the plate is 70 yo larger than the experimental 
value. A few plausible reasons for these differences between the theory and experi- 
ments have been described in K & A. On the other hand, the calculated mean velocity 
at the outer edge of the separated shear layers is smaller by only 3 yo than the experi- 
mental result. The vortex pattern in the wake calculated by Kuwahara’s method is 
more consistent with a few photographs taken by flow-visualization techniques than 
that calculated by Sarpkaya’s method. One may naturally expect that the calculated 
values of the Strouhal number, the time-averaged drag coefficient and other relevant 
hydrodynamic characteristics of a plate placed in a uniform shear flow will include 
errors of the same order of magnitude as those in a uniform flow. Therefore it is an 
assumption of the present investigation that the general tendency of changes in the 
kinematic and dynamic characteristics of the flow over the plate with changes in the 
free-stream non-uniformity is correctly predicted by the calculatidn based on the 
method of Kuwahara, qualitatively a t  least. The nature of the plausible reasons for 
the errors described in K & A seems to permit this assumption. In view of the fact 
that almost nothing is yet known about thevortex-shedding characteristics in theshear 
flow considered here, even this sort of preliminary information will play an important 
role in the setting up of a more detailed study in the future. 

In  passing it should be mentioned that a two-dimensional body with salient edges 
must be employed in this method of vortex-shedding calculation, because the Kutta 
condition is used to determine the strengths of the nascent vortices. Admittedly an 
inclined flat plate is the most fundamental shape of such a body both hydrodynamically 
and mathematically. 

One takes the x axis in the direction of the free stream and the y axis normal to it, 
the corresponding velocity components being denoted by u and v.  The centre of an 
inclined flat plate coincides with the origin of the x, y plane. The free-stream velocity 
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(urn, v w )  = (Urn + QY, O ) ,  (1) 
where U, is the velocity at infinity corresponding to the centre of the plate and G is the 
velocity gradient, or shear, of the free stream. 

A stream function @ is introduced by the definition 

a$py = U, a$lax = -v. (2) 

Thereby the equation of continuity is automatically satisfied and Euler's equations 
of motion for an incompressible fluid reduce to 

A@ = c, 

$ = +Gy"Y, 

where A = a2/ax2 + Play2. If @ is subdivided into two parts 

Y satisfies the Laplace equation 
AY = 0. 

(3) 

(4) 

( 5 )  

Accordingly, by the introduction of a harmonic function Q, which is related to Y by 
the Cauchy-Riemann equations, the complex function 

w = @+iY ( 6 )  

becomes an analytic function of z = x+iy. Uniform shear flow around a two- 
dimensional body can thus be treated by potential flow theory. It should be remarked 
here that the terminology in the present paper is the same as that in K & A, unless 
otherwise stated. 

A transformation plane Z = X + iY will be introduced by the definition 

z = ie- ia(Z-a2/Z) ,  (7) 

where a and 01 are real constants. The circle of radius a with centre a t  the origin of the 
8 plane is transformed in the physical plane into an inclined flat plate of length 4a a t  
an incidence angle 01 to the free stream. The leading and trailing edges of the plate, 
which will hereafter be referred to by the suffixes 1 and 2, are located at 2, = ai and 
8, = - ai respectively in the 8 plane. 

The complex velocity potential W consists of four parts, i.e. 

w = w, + wy + w(:) + w,, (8) 
in which W, represents the potential flow over a plate placed in a uniform flow of 
velocity U,, W ( 2  represents the flow induced by a system of vortices in the wake, W$ 
represents the flow induced by the nascent vortices and W, is needed to satisfy the 
boundary condition on the plate surface owing to the rotational component Bay2 in 
( 4 ) .  The first three components are exactly the same as those described in K & A. 
The last component will now be determined. Since the velocity vector on the 
surface of the plate should be tangential to it, the boundary condition can be written 
as 

SGyg +Ysp = 0, (9) 

where the suffix p implies the value on the surface of the plate and 'r, is the imaginary 
part of W,. Another transformation plane s = h + ip in introduced through 

s = i(Z - a)/(Z + a) ,  (10) 
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which maps the region outside the circle of radius a in the Z plane onto the upper half 
of the s plane. The ordinate of the plate is thus transformed into the real axis of the 
s plane. Accordingly, an analytic function whose imaginary part on the boundary is 
described by (9) is given in the s plane by 

in which 
y,(h,O) = 4asin(a)h/(h2+1).  ( 1 2 )  

W, = - iGa2 sin2 a( 1 - a2/Z2). (13) 

Substituting (1 2) into (1 1) and performing the integration, one finally obtains 

The strengths of the nascent vortices can be determined from equations (12a, b )  
of K & A except that B(Z)  is replaced by 

dZ dZ dZ 
dW, dW dWk, 
-+---s+- 

The velocity of any one of the vortices in, the wake is given by 

The oscillating force exerted on the plate can be calculated from the generalized 
Blasius theorem, which in the case of uniform shear flow becomes 

D - i E  = tip$ (dW/dz)2dz+ip-$ a W*dz*+apG$ (zdW-z*dW*). (17) at 

On substituting (8) into (17) together with the expressions for W,, W ( F ,  W(z) and W, 
and carrying out the integrations, one obtains 

D - iE = - 4nipGU, a2 sin2 a: + x ( - l)j+l ip 
.2  N j  

rik(ujk - ivjk) 
j =  1 k=O 

In  the same manner as in a uniform free stream, there is no force acting along the plate. 

3. Results and discussion 
In  the present calculation the fluid is assumed to be set in motion impulsively from 

rest with the velocity distribution (1) .  Although in the case of a uniform velooity 
distribution (G = 0) this condition may easily be realized by moving the plate impul- 
sively from rest in an otherwise stationary fluid, it will be next to impossible to obtain 
such a velocity profile as (1) experimentally a t  the instant of the start of flow. However, 
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FIGURE 1. Wave forms of (a) the drag coefficient C,,(b) the rate of shedding U,'(ar/at) of vorticity 
into the shear layers from the leading and trailing edges of the plate and (c)  the convective velocity 
o.,/U of the shear layers. a = 60°, 4aG/Um = -0.08. In (b) and ( c ) :  - , leading edge; ---, 
trailing edge. 
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FIGURE 2. Wave forms of (a) the drag coefficient C,, (b)  the rate of shedding U;'(ar/at) of vorticity 
into the shear layers from the leading and trailing edges of the plate and (c)  the convect,ive velocity 
DBh/U of the shear layers. a = 60°, 4aU/Um = 0.10. In (b)  and (c ) :  -, leading edge; ---, trailing 
edge. 

since it is the state of steadily periodic vortex shedding that most practical appplica- 
tions are concerned with, this physical difficulty with the initial conditions will not 
pose any problem. The kinematic and dynamic characteristics of the flow in the 
steadily periodic vortex shedding will not be influenced by the initial conditions. 

Numerical calculations were performed for an inclined flat plate a t  an incidence of 
60" by systematically changing the shear parameter 4aGlU,. The distance between 
the points of appearance of the nascent vortices and the leading and trailing edges 
of the plate was chosen as aJ(2a) = 0.0125 in view of the results obtained in K & A. 
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FIGURE 3. Wave forms of (a) the drag coefficient ca, (6)  the rate of shedding U;'(aI'/at) of vorticity 
into the shear layers from the leading and trailing edges of the plate and (c)  the convective velocity 
omh/U of the shear layers. a = 60", 4aG/Um = 0.20. In (b) and (c) : -, leading edge; ---, trailing 
edge. 

The time intervals St and St, and the cut-off length cr were the same as those used in 
K & A. 

Figures 1, 2 and 3 show the oscillation wave forms of the drag coefficient CD, the 
rate of shedding ar/at of vorticity into the shear layers and the convective velocity 
Dsh of the shear layers, the shear parameter being chosen as 4aG/Uoo = -0.08, 0.10 
and 0.20 respectively. The shear parameter is defined as positive if the free-stream 
velocity corresponding to the leading edge of the plate is higher than that correspond- 
ing to the trailing edge and vice versa. It is immediately evident that the frequency of 
vortex shedding increases with increases in the shear parameter. Since, as may be 
most clearly seen in the wave forms of ar/at, the vortex-shedding interval changes 
a little in an irregular manner from one cycle to another, the Strouhal number St is 
determined as the arithmetic average over all the intervals after the second peaks of 
(ar/at), and (arlat),. 

Figure 4 (a) shows the ratio of the Strouhal number of the plate in the shear flow to 
that in uniform flow, i.e. St/St,, where St, is the Strouhal number in the uniform flow, 
as a function of the shear parameter. In  these Strouhal numbers the representative 
velocity is U,. The relation between the Strouhal-number ratio and the shear parameter 
is closely approximated by a straight line of the form 

St/St, = 1 +c(~uG/U,), (19) 

in which c is a constant of proportionality whose value is about 2.4. The experimental 
data obtained by Abe (1976), which are also included in figure 4(a),  confirm a linear 
relationship between the Strouhal-number ratio and the shear parameter, the constant 
c taking a value of about 1.3 in the experiment. The authors could not find plausible 
explanations for the rather large difference between the theoretical and experimental 
values of c .  It would be interesting to repeat the same calculation by means of Sarp- 
kaya's method (1975), because his method yields a Strouhal number which compares 
well with experiments in the case of a uniform free stream. 
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FIUURE 4. Variation of (a) Strouhal number, (b)  outer-edge velocity of shear layers, (c )  convective 
velocity of shear layers and (d) drag coefficient with respect to the shear parameter. 0, present 
calculation; -, best-fit straight line; -A-, experiment by Abe (1976). u = 60'. 
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Figures 4(b), ( c )  and ( d )  show the relation between the shear parameter and the 
time-averaged values of the velocities at  the outer edges of the shear layers emanating 
from both edges of the plate, the convective velocity of the shear layers and the drag 
coefficient, which are denoted by VmaXm, Ushm and CD respectively, in the form of the 
ratio to the corresponding quantities in auniform free stream (identified by the suffix 0) .  
Here the suffix m represents an arithmetic average of the values a t  the leading and 
trailing edges of the plate. Each ratio on the whole increases with increasing shear 
parameter, except for the CD ratio corresponding to 4aG/Urn = 0.2. The best-fit lines 
to these data, which were obtained by means of the least-squares method, are as 
follows: 

Vmaxm/Vmaxmo = 1 + 0*99(4aG/Urn), 

Ushm/Ushmo = 1 + 0*50(4aG/Urn), 

(20) 

(21) 

C,/C,, = 1 +0*17(4~G/U,), (22) 

which may be applicable in the range -0.1 < 4aG/Urn < 0.20. An examination of 
(19)-(22) immediately reveals that the Strouhal number is most sensitive to the shear 
parameter, while the time-averaged drag coefficient is most insensitive to it. Since 
Abe (1976) observed experimentally that the drag coefficient of the plate was little 
influenced by the free-stream shear as long as the shear parameter was less than 0.1, 
the theoretical prediction is not necessarily inconsistent with the experiment. 

A linear relationship between the Strouhal number and the shear parameter may 
suggest that the characteristics of the separated flow over an inclined flat plate placed 
in a uniform shear flow are approximately prescribed by the free-stream velocity 
corresponding to the leading edge of the plate. With this suggestion in mind, (19) can 
be derived in a simple way. Since the Strouhal number of the vortex shedding behind 
an inclined flat plate in a uniform flow is constant over a wide range of the Reynolds 
number, a small change in the free-stream velocity, say AU,, is accompanied by a small 
change in the vortex-shedding frequency which is proportional to AUm. In  the uniform 
shear flow considered in this study, the free-stream velocity corresponding to the 
leading edge of the plate is higher by 2Ga sin a than that corresponding to the centre 
of the plate. Accordingly, the vortex-shedding frequency f in the uniform shear flow 
may be written as 

where fo is the vortex-shedding frequency in a uniform free stream whose velocity is 
equal to that of the approaching shear flow at the centre of the plate. On writing the 
constant of proportionality in (23) as c', one finally obtains 

f-fOKGsina,  (23) 

St/Sto = 1 + (c'sin a/(48t0)} (4aG/Urn), (24) 

which is reduced to (19) by the choice c = c' sin a/(4St0). If the experimental values of 
c = 1.3 and St, = 0.17 (Fage & Johansen 1927) are employed, one obtains c' N 1.0. 

It should be remarked that linear relationships between each flow characteristic 
and the shear parameter such as those given by (19)-(22) will be valid only for bluff 
bodies, such as an inclined flat plate, for which the leading and trailing edges can be 
clearly defined on physical grounds. In  the case of symmetric bluff bodies such as a 
circular cylinder and a normal flat plate, the dynamic properties of the flow must be 
even functions of the shear parameter, because the two shear flows described by 
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FIGURE 5. Vortex patterns over one full cycle of steadily periodic flow. 0, clockwise vortices; 
+ , counterclockwise vortices. u = 60°, 4aG/Um = 0.10. 
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FIQ~RE 6. Vortex patterns over one full cycle of steadily periodic flow. 0, clockwise vortices; 
+ , counterclockwise vortices. a = 60°, 4aa/Um = - 0.08. 
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u, = U, & Qy are physically equivalent in this case. Accordingly, if the shear para- 
meter is much less than unity, the Strouhal-number ratio can be written in the form 

StlSt, = 1 +cl(Gl/Um)2+~2(Gl/Um)4+ ..., 
where I is a representative length of the body and c1 and c2 are numerical constants. 
Equation (25) suggests that the non-uniformities in the free stream will have much 
less effect on the characteristics of the flow around symmetric bluff bodies than on 
those for asymmetric ones, as long as the shear parameter is not very large. 

Figures 5 and 6 show the vortex patterns in the wake over one full cycle of steadily 
periodic flow for two typical values of the shear parameter, i.e. 4aG/Um = 0.10 and 
- 0.08. As may be seen in figure 5, the vortex patterns corresponding to 4aG/Um = 0.10 
nre similar to those of an ordinary K&rm&n vortex street behind a symmetrical bluff 
body placed in a uniform free stream. The inclination of the vortex-street axis and 
the phase difference between the vortex shedding from the leading and trailing edges 
of the plate which were observed in the calculation of K & A are not evident in this 
case except for a small displacement of the vortex-street axis towardg the high-velocity 
side. The general characteristics of thevortex patterns corresponding to 4aG/Um = 0.20, 
which are not shown in the present paper, mainly in the interests of space, are almost 
the same as those corresponding to 4aG/Um = 0.10 except that the said displacement 
of the vortex-street axis is much smaller. However, as may be seen in figure 6, a uniform 
shear flow with a negative shear parameter yields much less coherent vortex patterns 
behind the plate. It is hoped that a detailed experimental study in the future will 
confirm, or otherwise, the vortex patterns in the wake predicted by the present 
investigation. 

4. Concluding remarks 
The kinematic and dynamic characteristics of the flow over an inclined flat plate 

placed in a uniform shear flow have been investigated through the use of an inviscid 
discrete-vortex model in which the points of appearance of the vortices are fixed near 
the separation points and their strengths are determined from the Kutta condition. 
Numerical calculations were performed for an inclined flat plate at an incidence of 60" 
by systematically changing the shear parameter of the approaching shear flow, the 
shear parameter being in the range - 0-08 to 0.20. 

The Strouhal number of the vortex shedding was found to increase linearly with 
increasing shear parameter. The linear relationship between the Strouhal number and 
the shear parameter was confirmed by an air-tunnel experiment except that the 
constant of proportionality obtained experimentally is about half the calculated one. 
The time-averaged values of the drag coefficient, the velocity at the outer edges of the 
shear layers and their convective velocities also increase linearly to fairly good approxi- 
mations as the shear parameter increases. The Strouhal number was found to be most 
sensitive to the shear parameter, whereas the time-averaged drag force is most in- 
sensitive to it. The theoretical predictions in this respect are not inconsistent with 
experiment. 

When the shear parameter is positive, the vortex patterns in the wake are coherent 
and similar to the ordinary KBrm&n vortex street observed behind a symmetric bluff 
body in a uniform flow. However, for a negative shear parameter the vortex patterns 
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become much less coherent, which may suggest that organized vortex systems will not 
appear in the case of sufficiently large negative shear parameters. Detailed experi- 
mental studies will be necessary to check the predictions of the present theoretical 
investigation. 
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